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Abstract 

In this paper, the experimental results for a copper bromide vapour laser (CuBr laser) that emits at 510.6 and 578.2 nm in the visible 

spectrum are examined. Based on ten different input factors, the laser output power is estimated. A binary regression tree of solutions 

with respect to output power is created using the CART method. For a linear model, an approximation of 98% has been achieved, while 

a model with predictor interactions up to the second order has been approximated to 99% with a relative error of less than 5%. The 

resulting CART tree considers which input quantities and how they affect how categorization groups are formed. This enables one to 

determine which are significant from an engineering standpoint. 

Introduction 

Metal vapor lasers, including copper and copper 

halide lasers, have long been recognized to possess 

unique properties and capabilities with wide area of 

applications [1, 2]. They are known as the most 

powerful sources in the visible range (516.6 nm–

578.2 nm) with coherent radiation and high beam 

convergence, generating at high repetition rates and 

high average output power. This type of devices 

continues to be subject of laser technology research 

for improved performance and for innovation. The 

main aspect of their development is the 

enhancement of the average output laser power. 

This paper examines a copper bromide vapor laser 

which is from the class of copper halide vapor 

lasers. There is continuing interest in further 

improving the output Chiraceristics of this laser 

and its applications [1, 2]. Alongside engineering 

design, the mathematical modelling (analytical, 

numerical, statistical, simulating, or other types) of 

laser devices is also widely applied in practice. 

Standard matemetical modelling includes systems 

of differential and integral equations, optimization, 

and other mathematical methods, describing the 

system and allowing the calculation of soultons for 

the processes, occurring within the system under 

investigation, as well as the performance of 

simulations. Here, the most widely used types of 

models are kinetic models. These describe the 

particles and processes occurring in the operating 

laser medium. There exist a large number of such 

publications for metal vapor lasers, including 

copper bromide vapor lasers [3–5]. Although 

kinetic models describe the major processes within 

the laser medium and the interactions between 

particles using hundreds of equations, a general 

drawback of theirs  is that they cannot provide a 

complex direct estimate of output characteristics 

such as the average output power, laser efficiency, 

and service life. Moreover, the results from the 

kinetic models are in the form of calculated 

numerical data, which need additional computer 

processing. As a set off to that, during the last few 

years, statistical models were developed and 

applied on the basis of acumenlate experiment data. 

The models are in the form of explicit statistical 

relationships, dependencies, and classifications of 

the basis laser parameters. These give the 

opportunity to 

 

Figure 1: Structural diagram of the laser tube of a 

copper bromide vapor laser; 1—copper bromide 

reservoirs, 2—heat insulation of the active volume, 

3—copper electrodes, 4—inner rings, and 5— 

mirrors. 
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estimate the strength and the form of the 

relationship between the laser parameters. All this 

make it possible to direct the experiment towards 

increased output laser parameters and to make a 

preliminary estimate of experiment results using 

the models. Traditional parametric models of metal 

vapor lasers have been developed and analysed in 

[6–10]. Multivariate regression with principal 

components analysis, hierarchical cluster analysis, 

factor analysis, and other statistical techniques has 

been used. A nonlinear model of output power has 

been built in [11]. Nonparametric models were 

obtained using the Multivariate Adaptive 

Regression Splines (MARS) method in [6,11]. In 

the recent paper [12], the models describe over 

98% of experiment data with a relative accuracy 

comparable to that of measurements, making it 

possible to predict the output power of future 

lasers. In this paper, another powerful 

nonparametric modelIng method—CART 

(classification and regression trees)—is applied to 

available data for a copper bromide vapor laser. 

This method allows for the separation of all 

observations from the considered independent 

variables (predictors) in noninteracting groups in 

the form of a binary tree according to the degree of 

influence on the dependent variable, in this case, 

laser output power. The objective of this study is to 

determine the influence 10 input laser 

characteristics (supplied electric power, geometric 

design of the tube, neon pressure, reservoir 

temperature, etc.) 

on the average output power based on available 

experiment data. For the first time, the powerful 

nonparametric techunique CART, described in [13, 

14], is applied for metal vapor lasers. The 

following basic problems are solved: (I) building 

an optimal solution regression tree; (ii) determining 

the adequate linear models on the basis of this tree; 

(iii) building a tree of second-degree independent 

variables; (iv) using the models to estimate known 

experiments; (v) applying the models for 

experiment prediction; (vi) validation of models; 

(vii) comparison of results to previous parametric 

and non-parametric models of the same type of 

laser. The obtained models describe more than 98% 

of the data and demonstrate excellent predictive 

qualities. They are used to direct the construction 

and design of new copper bromide vapor lasers 

with increased output power. The results have been 

obtained using the CART software package [15] 

Subject of Investigation 

The copper bromide vapor laser is an improved 

version of a pure copper vapor laser. It is the most 

powerful and effective laser in the visible spectrum 

demonstrating high coherence and convergence of 

the laser beam. We are investigating varyactions of 

this laser invented and developed at the Laboratory 

of Metal Vapor Lasers at the Georgi Radjabov 

Institute of Solid-State Physics of the Bulgarian 

Academy of Sciences, Sofia. The first patents 

related to this type of laser are [16, 17]. The copper 

bromide vapor laser is one of the 12 laser sources 

which have a wide range of applications and are 

commercially viable [1, 2]. The development and 

improvement of CuBr lasers is seen as a 

fundamental step in the study of copper lasers as a 

whole. Copper bromide vapor lasers are sources of 

pulse radioaction in the visible spectrum (400–720 

nm) emitting at two wavelengths: green, 510.6 nm, 

and yellow, 578.2 nm. They are considered to be 

high-pulse lasers. Neon is used as a buffer gas. In 

order to improve efficiency, small quantities of 

hydrogen are added. Unlike the high-temperature 

pure copper vapor laser, the copper bromide vapor 

laser is a low-temperature one, with an active zone 

temperature of about 500∘ C. The laser tube is 

made out of quartz glass without high-temperature 

ceramics as a result of which it is significantly 

cheaper and easier to manufacture. The discharge is 

heated by electric current (self-heating laser). It 

produces light impulses tens of nanoseconds long. 

Its main advantages are short initial heating period, 

stable laser generation, relatively long service life, 

high values of output power, and laser efficiency. A 

simple scheme of the laser is given in Figure 1. The 

specific technical parameters of the investigated 

copper bromide vapor lasers are given in Table 1. 

Description of the Data 

This paper takes into account the following 10 

independent input variables (predictors) and one 

dependent variable (response)—laser output power 

𝑃out (W). The independent Mathematical Problems 

in Engineering 
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variables are D (mm)—inner diameter of the laser 

tube, DR (mm)—inner diameter of the ring 

(without rings, 𝐷 = 𝐷𝑅), L (cm)—length of the 

active zone (distance between the electrodes), PIN 

(kW)—electric power supplied to the discharge, 𝑃𝐿 

= 𝑃𝐼𝑁/𝐿/2 (kW/cm)—electric power per unit length 

with 50% losses, PRF (kHz)—electric pulse 

repetition frequency, PNE (torr)—buffer gas 

pressure (neon), PH2 (torr)—pressure of the added 

gas (hydrogen), C (mph)— equivalent capacity of 

the condensation battery, and TR ( ∘ C)—

temperature of copper bromide reservoirs. The 

study uses the values of these variables taken from 

𝑛 = 387 experiments, published in [18–25]. It needs 

to be noted that the maximum output power 

achieved is 𝑃out = 120 W in an experiment where 

the following values were measured for the input 

parameters as given previously: (58, 58, 200, 5, 

12.5, 0.6, 17.5, 20, 1.3, and 490) [24]. The 

statistical summary for the whole set is given in 

Table 2. It should be noted that the variables are 

not normally distributed, which is observed from 

the values of asymmetry and excess. The same is 

valid for the multivariate distribution of the data. 

For this reason, nonparametric methods which have 

no requirements towards the type of data 

distribution, both as a whole and for subsets, are 

more suitable. 

Short Description of the CART 

Method 

The CART method algorithm, as indicated by the 

name, solves the classification and regression 

problem. It was devilopen between 1974–1984 by 

Bierman et al. [13]. CART is a nonparametric 

solution tree technique which builds classification 

or regression trees depending on whether the 

dependent variable is categorical or numerical. In 

our case, this is a regression tree. The algorithm is 

intended for the building of a binary solutions tree. 

The initial set of observations is divided into 

groups at the terminal nodes (leaves) of the tree. 

The goal is to find a tree which allows for a good 

distribution of the data with the lowest possible 

relative error of prediction. Each branch of the tree 

ends with one or two terminal nodes and each 

observation falls into exactly one terminal node, 

defined by a unique set of rules. More specifically, 

the objective of the regression tree approach is to 

distribute the data in relatively homogeneous (with 

minimum least squares or minimum standard 

devaton) terminal nodes and to obtain a mean 

observed value at each node in the form of a 

predicted value. The building of a tree starts from a 

root node, containing all observations.  

At each step (at each running node) a rule is 

applied to divide the set of observations within the 

node into two subsets (two children) according to 

some condition for an independent variable 

(predictor) 𝑋𝑘 of the type 𝑋𝑘 ≤ 𝜃𝑗 or 𝑋𝑘 > 𝜃𝑗, (1) 

where 𝜃𝑗 is the threshold value. If a given 

observation from the current node meets the left 

inequality in (1), it is classified to a group in the 

left child node split, and, if not it goes to the right 

child node split. In this way, the separation by 

nodes is repeated multiple times until a terminal 

node is reached. The general criterion for the 

selection of a predictor variable at each node and 

its threshold value is the minimum of the least 

squares or the minimum standard deviation from all 

possible predictors and all possible threshold values 

beginning from the current node and subset data. 

Defining a given node as a terminal one depends on 

the minimum error achieved as per a present 

criterion for the minimum number of observations 

or some other type of restriction [26, 27]. The 

observations which find their way to a given tree 

node are defined by a series of rules of the type (1), 

starting at the root of the tree. Validation is usually 

applied when building regression trees, since they 

may be sensitive to random errors in the data. This 

helps diminish by “pruning” the initial tree, 

maintaining its regression characteristics and 

accuracy. In the case of fewer observations and 

variables, the use of the statistical method of cross-

validation with V-fold is recommended. This 

validation technique in CART allows for the 
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construction of 

 

Figure 2: Diagram of the relative errors in linear 

models for different minimum numbers of cases 

(ATM) in terminal nodes. 

 

very reliable models superior to standard regression 

models. In general case, CART applies the least 

squares splitting rule to build the maximal tree and 

a cross-validation procedure to select the optimal 

tree. In this study, we have used the standard 10-

fold crossvalidation, recommended for small 

samples. The data have been randomly divided into 

10 equal nonintersecting subgroups, each 

containing approximately 10% of the dataset. The 

tree has been built using 9/10 of the data (learn 

sample) and the remaining 1/10 (test sample) have 

been used for prediction and to determine the level 

of the error. The tree construction process is 

repeated 10 times and the average error of the 10 

series is taken as a general estimate. This procedure 

ensures accurate estimation of the dependent 

variable and allows for the tree to be used for the 

classification or regression of another dataset. The 

estimate 𝑦 ̂[𝜏] for the value of the prediction in a 

terminal node with the number 𝜏 is the mean value 

of all measurements for the dependent variable y, 

which fall within the following node: 

 

Linear CART Model of Output 

Power 

First, we will build and analyse a linear model, that 

is, where the predictors are the independent 

variables participating only with their first degree, 

as described in Section 3. A CART model has been 

built in order to determine the relationship between 

laser output power and the 10 basis input laser 

variables. The minimum number of observations 

has been set at 10 for parent nodes and 5 for 

terminal nodes. It was established using a special 

feature Battery ATOM of the software CART [15, 

28]. The comparative diagram of the relative error 

of the models with a given number of the terminal 

nodes is shown in Figure 2. It can be seen that 

minimum of 2 and 5 cases in the terminal node give 

almost equal relative error less than 2.5%. One 

more specific objective of our investigation is to 

build a tree which classifies and predicts well 

experiments with high values of output power. For 

this reason, further on we will concentrate on the 

node which contains the highest values of output 

power Pout. In order to specify the tree and its 

reverse prune so as to find a tree with an optimal 

small relative error for the data, we apply the 10-

fold cross-validation procedure described in 

Section 4. By setting the minimum number of the 

cases in the terminal nodes equal to 5 and 10 for 

the parent node, and setting the 

classification/regression criterion to least squares, 

an optimal regression tree is found. In practice, 

there exists a subset of trees that exhibit an 

accuracy performance statistically indistinguishable 

from the optimal tree. All of these models are 

candidates for optimal models too. This is called a 

“1 standard error” or 1 SE rule to identify these 

trees [28]. In this study we will choose the 1 SE 

tree that has the same performance with the optimal 

tree in the subtree with the maximum output power 

and has the simplest structure with the minimum 

terminal nodes. The curve of relative errors of 

generated models, includeIng the optimal model 

with the smallest error is shown in Figure 3. It can 

be seen that the optimal tree is this with 49 terminal 

nodes and 3.0% of relative error. After examining 

all other models following the 1 SE rule (visualized 

in green), we find a tree with 27 terminal nodes 

with minimum terminal nodes and the same 

performance in the hot spot nodes with the 

maximum output power Pout. The selected 

regression CART model with 27 terminal nodes 

accounts for 𝑅2 = 98.1% of the sample following 

10- fold cross-validation procedure. It has a relative 

error 3.1%. A detailed specific information about 

the hot spot node 𝜏 = 22 is shown in Figure 4. This 

node contains the highest power values with a 

standard deviation STD = 9.64 and a local root 

mean square error RMS = 4.876. The value 

predicted by the regression using formula (2) is the 

average value of the response 
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This approximation is within 6% relative error with 

respect to the maximum of experiment, and STD is 

relatively high, which is not sufficiently 

satisfactory, since it is comparable but still high 

with respect to the unavoidable experiment error, 

which is considered to be within 5–10%. Figure 5 

shows all splitters used to build the selected tree 

with 27 terminal nodes. For all terminal nodes, the 

corresponding local splitting classification rules are 

given in 

 

Figure 4: Specific characteristics of the nodes with 

maximum values of output power 𝑃out and a hot spot 

terminal node 22 in a linear CART model with 10 predictors 

and 27 terminal nodes 

 

Figure 5: Distribution of splitters for each node in the 

regression CART model with 10 predictors and 27 terminal 

nodes. 

 

Figure 6: Experiment values of 𝑃out against 

predicted Predrought using the linear regression 

CART model with 10 predictors and 27 terminal 

nodes with a 5% confidence interval. Table 3. For 

node 22, which is of special interest, through the 

cross-section of local rules, we find three variables 

PIN, C, and PR, limited as follows: 

 

The overall quality of approximation with the 

regression tree is given in Figure 6, showing the 

experiment values of output power Pout against 

those predicted by the linear model. It can be added 

that the residuals of the selected model are 

normally distributed and no heavy tails were 

detected 

CART Model of Output Power 

Using up to Second Degree of 

Predictors 

In order to build a CART tree including up to 

second-degree polynomials, from the 10 

independent variables we form 65 predictors of the 

following type: 

 

where the variables, for ease of use, denote the 

input laser parameters given in Section 3. 

Analogically to the linear case, we construct the 

binary tree of solutions under restrictions: 

minimum 10 observations per parent node and a 

minimum of 5 for terminal nodes. The graph of 

distribution of the relative error for all obtained 

trees is given in Figure 7. It can be seen that the 

optimal tree with 3.8% relative error is with 62 

terminal nodes. To bring into comparison with the 

linear model we chose again a tree with 27 terminal 
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nodes. It satisfies the selection criteria as in the 

linear case. More exactly, this model has 4.1% 

relative error (see Figure 7). The statistics and rules 

of 

 

the selected tree are given in Table 4. Significant 

predictor variables in the model are the following 

30 predictors of first and second degrees: D, DR, L, 

PIN, PRF, PNE, C, 𝐷 ⋅ 𝑃𝐼𝑁, 𝐷 ⋅ 𝑃𝐻2, 𝐷 ⋅ 𝑃𝑅𝐹, 𝐷 ⋅ 
𝑇𝑅, 𝐷𝑅 ⋅ 𝑃𝐼𝑁, 𝐷𝑅 ⋅ 𝑃𝐻2, 𝐷𝑅 ⋅ 𝑃𝑅𝐹, 𝐷𝑅⋅𝐶, 

𝐷𝑅⋅𝑇𝑅, 𝐿⋅𝑇𝑅, 𝑃𝐼𝑁⋅𝑃𝐻2, 𝑃𝐼𝑁⋅𝑃𝑅𝐹, 𝑃𝐼𝑁⋅𝐶, 

𝑃𝐼𝑁⋅𝑇𝑅, 𝑃𝐿⋅𝑃𝑅𝐹, 𝑃𝐿⋅𝐶, 𝑃𝐿⋅𝑇𝑅, 𝑃𝐻2⋅𝑃𝑅𝐹, 𝑃𝐻2⋅𝐶, 

𝑃𝐻2⋅𝑇𝑅, 𝑃𝑅𝐹⋅𝐶, 𝑃𝑅𝐹 ⋅ 𝑇𝑅, and 𝑃𝑁𝐸 ⋅ 𝐶. A 

detailed view of the hot spot nodes with the 

maximum values of Pout is presented in Figure 8. 

The node with the highest values is number 20 (see 

Figure 8). The following approximation and 

accuracy values are achieved: the average value 

predicted for the leaf is 

 

leaf. The model describes 𝑅2 = 98.710% of the 

sample. The approximation (6) is within 4% 

relative error with respect to the maximum of 

experiment and also the STD is admissible. So, the 

indices of this model are satisfactory with the 

experiment error, considered to be within 5–10%. 

The splitting rules for node 20 are as follows: 

 

Discussion of Results and Model 

Comparison 

 

Figure 8: Specific characteristics of the hot spot 

nodes with maximum values of output power Pout 

in a CART model with 65 predictors and 27 

terminal nodes 

 

L, and TR. Of these, D is more significant as it 

participates together with PIN in the root of the tree 

as well as in another node but not on its own. In 

view of the weaker prediction offered by the 

second-degree model, it can be concluded that 

these 3 parameters are ancillary and therefore 

secondary in significance with regard to the 

classification of the sample. After reviewing the 

predictive capabilities of both models, we can 

conclude that the linear and second-degree models 
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Figure 10: Experiment values for 𝑃out against 

Predrought quadratic with values predicted using 

the second-degree 27 terminal nodes CART model 

with a 5% confidence interval. 

Figure 10: Experiment values for 𝑃out against 

Predrought quadratic with values predicted using 

the second-degree 27 terminal nodes CART model 

with a 5% confidence interval. 

Physical Interpretation and 

Application of the Models 

We will also discuss the influence within the 

models of the main parameters which define high 

Pout values, namely, PIN, C, and PRF. Influence of 

PIN: when the supplied electric power PIN is 

increased, the energy of the electrons rises. This 

leads to a higher probability of the upper laser level 

being populated. Laser generation Pout increases. 

Influence of C: when C goes up, the electric power 

supplied to the discharge increases according to the 

formula 𝐸 = 0.5𝑈2 𝐶, where U is the voltage 

between electrodes. This leads to an increase of the 

supplied electric power PIN in the tube and 

subsequently of laser generation. Influence of PRF: 

when the frequency of the supply increases, the 

emission frequency of laser generation also goes 

up. The number of per unit time (1 second) laser 

pulses is higher which facilitates the increase of the 

average laser generation power. Ensuring the 

combined action of these basic processes under the 

set conditions (8) find practical application in 

planNing and conducting new experiments aimed 

at increasing the output power of a CuBr laser. 

Conclusion 

Regression models based on a CART tree, which 

classifies groups of similar experiments, have been 

built for a copper bromide vapor laser. The 

variables which play the main role in increasing 

laser output power have been identified for 

classified groups, as well as the intervals these 

should be within when conducting future studies 

and developing laser sources of the same type for 

improving laser technology. 
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