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Abstract

In this paper, the experimental results for a copper bromide vapour laser (CuBr laser) that emits at 510.6 and 578.2 nm in the visible
spectrum are examined. Based on ten different input factors, the laser output power is estimated. A binary regression tree of solutions
with respect to output power is created using the CART method. For a linear model, an approximation of 98% has been achieved, while
a model with predictor interactions up to the second order has been approximated to 99% with a relative error of less than 5%. The
resulting CART tree considers which input quantities and how they affect how categorization groups are formed. This enables one to
determine which are significant from an engineering standpoint.

Introduction

Metal vapor lasers, including copper and copper
halide lasers, have long been recognized to possess
unique properties and capabilities with wide area of
applications [1, 2]. They are known as the most
powerful sources in the visible range (516.6 nm—
578.2 nm) with coherent radiation and high beam
convergence, generating at high repetition rates and
high average output power. This type of devices
continues to be subject of laser technology research
for improved performance and for innovation. The
main aspect of their development is the
enhancement of the average output laser power.
This paper examines a copper bromide vapor laser
which is from the class of copper halide vapor
lasers. There is continuing interest in further
improving the output Chiraceristics of this laser
and its applications [1, 2]. Alongside engineering
design, the mathematical modelling (analytical,
numerical, statistical, simulating, or other types) of
laser devices is also widely applied in practice.
Standard matemetical modelling includes systems
of differential and integral equations, optimization,
and other mathematical methods, describing the
system and allowing the calculation of soultons for
the processes, occurring within the system under
investigation, as well as the performance of
simulations. Here, the most widely used types of
models are kinetic models. These describe the
particles and processes occurring in the operating
laser medium. There exist a large number of such

publications for metal vapor lasers, including
copper bromide vapor lasers [3-5]. Although
kinetic models describe the major processes within
the laser medium and the interactions between
particles using hundreds of equations, a general
drawback of theirs is that they cannot provide a
complex direct estimate of output characteristics
such as the average output power, laser efficiency,
and service life. Moreover, the results from the
kinetic models are in the form of calculated
numerical data, which need additional computer
processing. As a set off to that, during the last few
years, statistical models were developed and
applied on the basis of acumenlate experiment data.
The models are in the form of explicit statistical
relationships, dependencies, and classifications of
the basis laser parameters. These give the
opportunity to

Figure 1: Structural diagram of the laser tube of a
copper bromide vapor laser; 1—copper bromide
reservoirs, 2—heat insulation of the active volume,
3—copper electrodes, 4—inner rings, and 5—
mirrors.
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Charactenstic

Description

Emission wavelength
Operating mode

Pulse frequency

Ave rage volume power dens Ll‘l.'

Measured temperature of the
wall

Pulse length

Average output power
Coeflicient of efficiency (laser
efficiency)

Total service life

Pulse energy

Temperature of the active
medium

Start time

Structural elements

510.6 and 578.2 nm
Pulse-periodic, self-heating
10-125 kHz

L4-2W/em’

500°C

20-50ns

W
>1%

1000 hours
6.9 m]

500-350°C

10-15 min

Quartz tube, outer electrodes,

Lopper bromide reservoirs

estimate the strength and the form of the
relationship between the laser parameters. All this
make it possible to direct the experiment towards
increased output laser parameters and to make a
preliminary estimate of experiment results using
the models. Traditional parametric models of metal
vapor lasers have been developed and analysed in
[6-10]. Multivariate regression with principal
components analysis, hierarchical cluster analysis,
factor analysis, and other statistical techniques has
been used. A nonlinear model of output power has
been built in [11]. Nonparametric models were
obtained using the Multivariate Adaptive
Regression Splines (MARS) method in [6,11]. In
the recent paper [12], the models describe over
98% of experiment data with a relative accuracy
comparable to that of measurements, making it
possible to predict the output power of future
lasers. In this paper, another powerful
nonparametric modellng method—CART
(classification and regression trees)—is applied to
available data for a copper bromide vapor laser.
This method allows for the separation of all
observations from the considered independent
variables (predictors) in noninteracting groups in
the form of a binary tree according to the degree of
influence on the dependent variable, in this case,
laser output power. The objective of this study is to
determine  the influence 10 input laser
characteristics (supplied electric power, geometric
design of the tube, neon pressure, reservoir
temperature, etc.)

on the average output power based on available
experiment data. For the first time, the powerful
nonparametric techunique CART, described in [13,
14], is applied for metal vapor lasers. The
following basic problems are solved: (I) building
an optimal solution regression tree; (ii) determining
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the adequate linear models on the basis of this tree;
(ii1) building a tree of second-degree independent
variables; (iv) using the models to estimate known
experiments; (v) applying the models for
experiment prediction; (vi) validation of models;
(vii) comparison of results to previous parametric
and non-parametric models of the same type of
laser. The obtained models describe more than 98%
of the data and demonstrate excellent predictive
qualities. They are used to direct the construction
and design of new copper bromide vapor lasers
with increased output power. The results have been
obtained using the CART software package [15]

Subject of Investigation

The copper bromide vapor laser is an improved
version of a pure copper vapor laser. It is the most
powerful and effective laser in the visible spectrum
demonstrating high coherence and convergence of
the laser beam. We are investigating varyactions of
this laser invented and developed at the Laboratory
of Metal Vapor Lasers at the Georgi Radjabov
Institute of Solid-State Physics of the Bulgarian
Academy of Sciences, Sofia. The first patents
related to this type of laser are [16, 17]. The copper
bromide vapor laser is one of the 12 laser sources
which have a wide range of applications and are
commercially viable [1, 2]. The development and
improvement of CuBr lasers is seen as a
fundamental step in the study of copper lasers as a
whole. Copper bromide vapor lasers are sources of
pulse radioaction in the visible spectrum (400-720
nm) emitting at two wavelengths: green, 510.6 nm,
and yellow, 578.2 nm. They are considered to be
high-pulse lasers. Neon is used as a buffer gas. In
order to improve efficiency, small quantities of
hydrogen are added. Unlike the high-temperature
pure copper vapor laser, the copper bromide vapor
laser is a low-temperature one, with an active zone
temperature of about 5000 C. The laser tube is
made out of quartz glass without high-temperature
ceramics as a result of which it is significantly
cheaper and easier to manufacture. The discharge is
heated by electric current (self-heating laser). It
produces light impulses tens of nanoseconds long.
Its main advantages are short initial heating period,
stable laser generation, relatively long service life,
high values of output power, and laser efficiency. A
simple scheme of the laser is given in Figure 1. The
specific technical parameters of the investigated
copper bromide vapor lasers are given in Table 1.

Description of the Data

This paper takes into account the following 10
independent input variables (predictors) and one
dependent variable (response)—Ilaser output power
Pout (W). The independent Mathematical Problems
in Engineering
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Minimum ~ Masimum Mean  Std deviation Shewnes Kurtosis

Slatistic Statisic Statisic Sabisic  Safishic  Std eor  Statstic  Sid emor

D(mm) 1500 300 4659 10072 089 02 18 05
DR () 43 300 8 1831 065002 160 05
FIN (kW) 10 i} 1 17 10601 0 05
L {em) 3000 000 10639 1070 040 160 035
PL(kWiem) 500 1667 1092 5l 047 02 0l 0%
PH2 (fore) 000 080 0% 05 0415012 140 05
PRF (k) £ 155 pan} 58 £ T NV | R
PNE tore) §00 15000 15 u 03 0 k4 0B
C(nf) 03 40 13 0al My e’ 08
TR(C) 500 000 1 15 g I 08
Pout (W) 03 12000 iu 357 [IE ) 042 05
Valid N w

variables are D (mm)—inner diameter of the laser
tube, DR (mm)—inner diameter of the ring
(without rings, D = DR), L (cm)—Ilength of the
active zone (distance between the electrodes), PIN
(kW)—electric power supplied to the discharge, PL
= PIN/L/2 (kW/cm)—electric power per unit length
with 50% losses, PRF (kHz)—electric pulse
repetition frequency, PNE (torr)—buffer gas
pressure (neon), PH2 (torr)—pressure of the added
gas (hydrogen), C (mph)— equivalent capacity of
the condensation battery, and TR ( o C)—
temperature of copper bromide reservoirs. The
study uses the values of these variables taken from
n = 387 experiments, published in [18-25]. It needs
to be noted that the maximum output power
achieved is Pout = 120 W in an experiment where
the following values were measured for the input
parameters as given previously: (58, 58, 200, 5,
12.5, 0.6, 17.5, 20, 1.3, and 490) [24]. The
statistical summary for the whole set is given in
Table 2. It should be noted that the variables are
not normally distributed, which is observed from
the values of asymmetry and excess. The same is
valid for the multivariate distribution of the data.
For this reason, nonparametric methods which have
no requirements towards the type of data
distribution, both as a whole and for subsets, are
more suitable.

Short Description of the CART
Method

The CART method algorithm, as indicated by the
name, solves the classification and regression
problem. It was devilopen between 1974-1984 by
Bierman et al. [13]. CART is a nonparametric
solution tree technique which builds classification
or regression trees depending on whether the
dependent variable is categorical or numerical. In
our case, this is a regression tree. The algorithm is
intended for the building of a binary solutions tree.
The initial set of observations is divided into
groups at the terminal nodes (leaves) of the tree.
The goal is to find a tree which allows for a good
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distribution of the data with the lowest possible
relative error of prediction. Each branch of the tree
ends with one or two terminal nodes and each
observation falls into exactly one terminal node,
defined by a unique set of rules. More specifically,
the objective of the regression tree approach is to
distribute the data in relatively homogeneous (with
minimum least squares or minimum standard
devaton) terminal nodes and to obtain a mean
observed value at each node in the form of a
predicted value. The building of a tree starts from a
root node, containing all observations.

At each step (at each running node) a rule is
applied to divide the set of observations within the
node into two subsets (two children) according to
some condition for an independent variable
(predictor) Xk of the type Xk < 6j or Xk > 6j, (1)
where 6j is the threshold wvalue. If a given
observation from the current node meets the left
inequality in (1), it is classified to a group in the
left child node split, and, if not it goes to the right
child node split. In this way, the separation by
nodes is repeated multiple times until a terminal
node is reached. The general criterion for the
selection of a predictor variable at each node and
its threshold value is the minimum of the least
squares or the minimum standard deviation from all
possible predictors and all possible threshold values
beginning from the current node and subset data.
Defining a given node as a terminal one depends on
the minimum error achieved as per a present
criterion for the minimum number of observations
or some other type of restriction [26, 27]. The
observations which find their way to a given tree
node are defined by a series of rules of the type (1),
starting at the root of the tree. Validation is usually
applied when building regression trees, since they
may be sensitive to random errors in the data. This
helps diminish by “pruning” the initial tree,
maintaining its regression characteristics and
accuracy. In the case of fewer observations and
variables, the use of the statistical method of cross-
validation with V-fold is recommended. This
validation technique in CART allows for the
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Figure 2: Diagram of the relative errors in linear
models for different minimum numbers of cases
(ATM) in terminal nodes.
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Frgure 3: Curve of the relative errors of linear CART models with
10 predictors.

very reliable models superior to standard regression
models. In general case, CART applies the least
squares splitting rule to build the maximal tree and
a cross-validation procedure to select the optimal
tree. In this study, we have used the standard 10-
fold crossvalidation, recommended for small
samples. The data have been randomly divided into
10 equal nonintersecting subgroups, each
containing approximately 10% of the dataset. The
tree has been built using 9/10 of the data (learn
sample) and the remaining 1/10 (test sample) have
been used for prediction and to determine the level
of the error. The tree construction process is
repeated 10 times and the average error of the 10
series is taken as a general estimate. This procedure
ensures accurate estimation of the dependent
variable and allows for the tree to be used for the
classification or regression of another dataset. The
estimate )[7] for the value of the prediction in a
terminal node with the number 7 is the mean value
of all measurements for the dependent variable y,
which fall within the following node:

o) =¥ Ve €T (2)

Linear CART Model of Output
Power
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First, we will build and analyse a linear model, that
is, where the predictors are the independent
variables participating only with their first degree,
as described in Section 3. A CART model has been
built in order to determine the relationship between
laser output power and the 10 basis input laser
variables. The minimum number of observations
has been set at 10 for parent nodes and 5 for
terminal nodes. It was established using a special
feature Battery ATOM of the software CART [15,
28]. The comparative diagram of the relative error
of the models with a given number of the terminal
nodes is shown in Figure 2. It can be seen that
minimum of 2 and 5 cases in the terminal node give
almost equal relative error less than 2.5%. One
more specific objective of our investigation is to
build a tree which classifies and predicts well
experiments with high values of output power. For
this reason, further on we will concentrate on the
node which contains the highest values of output
power Pout. In order to specify the tree and its
reverse prune so as to find a tree with an optimal
small relative error for the data, we apply the 10-
fold cross-validation procedure described in
Section 4. By setting the minimum number of the
cases in the terminal nodes equal to 5 and 10 for
the parent node, and setting the
classification/regression criterion to least squares,
an optimal regression tree is found. In practice,
there exists a subset of trees that exhibit an
accuracy performance statistically indistinguishable
from the optimal tree. All of these models are
candidates for optimal models too. This is called a
“l standard error” or 1 SE rule to identify these
trees [28]. In this study we will choose the 1 SE
tree that has the same performance with the optimal
tree in the subtree with the maximum output power
and has the simplest structure with the minimum
terminal nodes. The curve of relative errors of
generated models, includelng the optimal model
with the smallest error is shown in Figure 3. It can
be seen that the optimal tree is this with 49 terminal
nodes and 3.0% of relative error. After examining
all other models following the 1 SE rule (visualized
in green), we find a tree with 27 terminal nodes
with minimum terminal nodes and the same
performance in the hot spot nodes with the
maximum output power Pout. The selected
regression CART model with 27 terminal nodes
accounts for R2 = 98.1% of the sample following
10- fold cross-validation procedure. It has a relative
error 3.1%. A detailed specific information about
the hot spot node 7 =22 is shown in Figure 4. This
node contains the highest power values with a
standard deviation STD = 9.64 and a local root
mean square error RMS = 4.876. The value
predicted by the regression using formula (2) is the
average value of the response
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Pouty,) = 113.333 W. (3)

This approximation is within 6% relative error with
respect to the maximum of experiment, and STD is
relatively high, which is not sufficiently
satisfactory, since it is comparable but still high
with respect to the unavoidable experiment error,
which is considered to be within 5-10%. Figure 5
shows all splitters used to build the selected tree
with 27 terminal nodes. For all terminal nodes, the
corresponding local splitting classification rules are
given in

MNode 23
C= 1.45
STD = 10.011
Avg = 104667
W=21.00
N =21
C= 145 O > 145
— 1
Node 24 Terminal
FIN = 4.75 Node 23
STD = 8.46.0 5TD = 5963
Avg = 110.417 Awg = 97.000
W= 1200 W= 9.00
N=12 N =
—_——
La 1
PIN = 475 PIN > 475
L . 1
Terminal Terminal
Node 21 MNode 22
S5TD = 5.766 STD = 9.638
Avg = 10750 Awvg = 113,333
W= G.00 W = & i
N =6 N=8

Figure 4: Specific characteristics of the nodes with
maximum values of output power Pout and a hot spot
terminal node 22 in a linear CART model with 10 predictors
and 27 terminal nodes

P{.—\'_

PN

Figure 5: Distribution of splitters for each node in the
regression CART model with 10 predictors and 27 terminal
nodes.
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Figure 6: Experiment values of Pout against
predicted Predrought using the linear regression
CART model with 10 predictors and 27 terminal
nodes with a 5% confidence interval. Table 3. For
node 22, which is of special interest, through the
cross-section of local rules, we find three variables
PIN, C, and PR, limited as follows:

Node 22 : PIN = 475kW,
(4)
C = 1.45nF, 145kHz < PRF < 20.5kHz.

The overall quality of approximation with the
regression tree is given in Figure 6, showing the
experiment values of output power Pout against
those predicted by the linear model. It can be added
that the residuals of the selected model are
normally distributed and no heavy tails were
detected

CART Model of Output Power
Using up to Second Degree of
Predictors

In order to build a CART tree including up to
second-degree  polynomials, from the 10
independent variables we form 65 predictors of the
following type:

X, XX, izj ij=12..,10, (5)

where the variables, for ease of use, denote the
input laser parameters given in Section 3.
Analogically to the linear case, we construct the
binary tree of solutions under restrictions:
minimum 10 observations per parent node and a
minimum of 5 for terminal nodes. The graph of
distribution of the relative error for all obtained
trees is given in Figure 7. It can be seen that the
optimal tree with 3.8% relative error is with 62
terminal nodes. To bring into comparison with the
linear model we chose again a tree with 27 terminal

Page | 5


http://www.jbstonline.com/

Mr.V.Karthik, JBio sci Tech, Vol 11(1),2023, 01-07

nodes. It satisfies the selection criteria as in the
linear case. More exactly, this model has 4.1%
relative error (see Figure 7). The statistics and rules
of

5 015 0041 0.038

T ) ‘

z 005 e — —-—

| : : : .
1] 10 20 30 40 50 &0 70

Number of nodes

Fiaure 7: Relative error curve for all generated CART trees using 65
predictors from (3).

the selected tree are given in Table 4. Significant
predictor variables in the model are the following
30 predictors of first and second degrees: D, DR, L,
PIN, PRF, PNE, C, D - PIN,D - PH2, D - PRF, D -
TR, DR - PIN, DR - PH2, DR - PRF, DR-C,
DR-TR, L-TR, PIN-PH2, PIN-PRF, PIN-C,
PIN-TR, PL-PRF, PL-C, PL-TR, PH2-PRF, PH2-C,
PH2-TR, PRF-C, PRF - TR, and PNE - C. A
detailed view of the hot spot nodes with the
maximum values of Pout is presented in Figure 8.
The node with the highest values is number 20 (see
Figure 8). The following approximation and
accuracy values are achieved: the average value
predicted for the leaf is

Pouty, = 114.86 W, (6)

leaf. The model describes R2 = 98.710% of the
sample. The approximation (6) is within 4%
relative error with respect to the maximum of
experiment and also the STD is admissible. So, the
indices of this model are satisfactory with the
experiment error, considered to be within 5-10%.
The splitting rules for node 20 are as follows:

MNode 20 : D- PIN > 88,
PIN = 3.15,PRF - C = 24.5,
PRF = 19.25,
PIN - PRF = 76.875.
(7

Discussion of Results and Model
Comparison
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Node 19
PIN-PRF = 76.88
5TD = 10.243
Avg = 101.903
W = 31.00
N =31

PIN-FRF < 76.88

PIN-PRF > 76.88

MNode 20 Terminal
PIN-C = 685 Node 20
STDy= 7.812 STD = 6220
Avg = 98125 Avg = 114857
W= 24.00 W =T.00
N =24 N=7
I
PIN-C = 6.85 PIN-C > 6.85
Made 21 _ Terminal
PIN-PRF = 68.75 Mode 19
ST = 5.870 STD = 7.222
Avg = 100579 Ava — B8 200
W = 19.00 vE = 88
N =19 W = 5.00
- N=5
i
PIN-PRF = 68.75 PIN-PRF > 68.75
Terminal Terminal
Node 17 Node 18
5TD = 4.509 STD = 5217
Avg = 98.231 Avg = 105.667
W = 13.00 W= &6.00
N =13 N=6

Figure 8: Specific characteristics of the hot spot
nodes with maximum values of output power Pout
in a CART model with 65 predictors and 27

terminal nodes
%
@;T_zl PINTR| (I

[PNE

PIN-PR

]

PRF

Figure 9: Splitters for the CART tree with 27 terminal nodes for 65 predictors.

L, and TR. Of these, D is more significant as it
participates together with PIN in the root of the tree
as well as in another node but not on its own. In
view of the weaker prediction offered by the
second-degree model, it can be concluded that
these 3 parameters are ancillary and therefore
secondary in significance with regard to the
classification of the sample. After reviewing the
predictive capabilities of both models, we can
conclude that the linear and second-degree models

Page | 6


http://www.jbstonline.com/

Mr.V.Karthik, JBio sci Tech, Vol 11(1),2023, 01-07

120 o
100
o]
= B0 =
|
T 80 S o
_:_I
£ 40 4
20
R linear = 0.987
0 -
| | I | I | [
0 20 40 &0 a0 100 120
Pout (W)

Figure 10: Experiment values for Pout against
Predrought quadratic with values predicted using
the second-degree 27 terminal nodes CART model
with a 5% confidence interval.

Figure 10: Experiment values for Pout against
Predrought quadratic with values predicted using
the second-degree 27 terminal nodes CART model
with a 5% confidence interval.

Physical Interpretation and
Application of the Models

We will also discuss the influence within the
models of the main parameters which define high
Pout values, namely, PIN, C, and PRF. Influence of
PIN: when the supplied electric power PIN is
increased, the energy of the electrons rises. This
leads to a higher probability of the upper laser level
being populated. Laser generation Pout increases.
Influence of C: when C goes up, the electric power
supplied to the discharge increases according to the
formula £ = 0.5U2 C, where U is the voltage
between electrodes. This leads to an increase of the
supplied electric power PIN in the tube and
subsequently of laser generation. Influence of PRF:
when the frequency of the supply increases, the
emission frequency of laser generation also goes
up. The number of per unit time (1 second) laser
pulses is higher which facilitates the increase of the
average laser generation power. Ensuring the
combined action of these basic processes under the
set conditions (8) find practical application in
planNing and conducting new experiments aimed
at increasing the output power of a CuBr laser.

Conclusion

Regression models based on a CART tree, which
classifies groups of similar experiments, have been
built for a copper bromide vapor laser. The
variables which play the main role in increasing
laser output power have been identified for
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classified groups, as well as the intervals these
should be within when conducting future studies
and developing laser sources of the same type for
improving laser technology.
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